Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium.

Identifieur interne : 000928 ( Main/Exploration ); précédent : 000927; suivant : 000929

Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium.

Auteurs : Paula A. Belinky [Israël] ; Nufar Flikshtein ; Sergey Lechenko ; Shimon Gepstein ; Carlos G. Dosoretz

Source :

RBID : pubmed:14602606

Descripteurs français

English descriptors

Abstract

We studied oxidative stress in lignin peroxidase (LIP)-producing cultures (cultures flushed with pure O(2)) of Phanerochaete chrysosporium by comparing levels of reactive oxygen species (ROS), cumulative oxidative damage, and antioxidant enzymes with those found in non-LIP-producing cultures (cultures grown with free exchange of atmospheric air [control cultures]). A significant increase in the intracellular peroxide concentration and the degree of oxidative damage to macromolecules, e.g., DNA, lipids, and proteins, was observed when the fungus was exposed to pure O(2) gas. The specific activities of manganese superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase and the consumption of glutathione were all higher in cultures exposed to pure O(2) (oxygenated cultures) than in cultures grown with atmospheric air. Significantly higher gene expression of the LIP-H2 isozyme occurred in the oxygenated cultures. A hydroxyl radical scavenger, dimethyl sulfoxide (50 mM), added to the culture every 12 h, completely abolished LIP expression at the mRNA and protein levels. This effect was confirmed by in situ generation of hydroxyl radicals via the Fenton reaction, which significantly enhanced LIP expression. The level of intracellular cyclic AMP (cAMP) was correlated with the starvation conditions regardless of the oxygenation regimen applied, and similar cAMP levels were obtained at high O(2) concentrations and in cultures grown with atmospheric air. These results suggest that even though cAMP is a prerequisite for LIP expression, high levels of ROS, preferentially hydroxyl radicals, are required to trigger LIP synthesis. Thus, the induction of LIP expression by O(2) is at least partially mediated by the intracellular ROS.

DOI: 10.1128/aem.69.11.6500-6506.2003
PubMed: 14602606
PubMed Central: PMC262269


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Belinky, Paula A" sort="Belinky, Paula A" uniqKey="Belinky P" first="Paula A" last="Belinky">Paula A. Belinky</name>
<affiliation wicri:level="1">
<nlm:affiliation>MIGAL-Galilee Technology Center, Kiryat Shmona 10200, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>MIGAL-Galilee Technology Center, Kiryat Shmona 10200</wicri:regionArea>
<wicri:noRegion>Kiryat Shmona 10200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Flikshtein, Nufar" sort="Flikshtein, Nufar" uniqKey="Flikshtein N" first="Nufar" last="Flikshtein">Nufar Flikshtein</name>
</author>
<author>
<name sortKey="Lechenko, Sergey" sort="Lechenko, Sergey" uniqKey="Lechenko S" first="Sergey" last="Lechenko">Sergey Lechenko</name>
</author>
<author>
<name sortKey="Gepstein, Shimon" sort="Gepstein, Shimon" uniqKey="Gepstein S" first="Shimon" last="Gepstein">Shimon Gepstein</name>
</author>
<author>
<name sortKey="Dosoretz, Carlos G" sort="Dosoretz, Carlos G" uniqKey="Dosoretz C" first="Carlos G" last="Dosoretz">Carlos G. Dosoretz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:14602606</idno>
<idno type="pmid">14602606</idno>
<idno type="pmc">PMC262269</idno>
<idno type="doi">10.1128/aem.69.11.6500-6506.2003</idno>
<idno type="wicri:Area/Main/Corpus">000927</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000927</idno>
<idno type="wicri:Area/Main/Curation">000927</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000927</idno>
<idno type="wicri:Area/Main/Exploration">000927</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Belinky, Paula A" sort="Belinky, Paula A" uniqKey="Belinky P" first="Paula A" last="Belinky">Paula A. Belinky</name>
<affiliation wicri:level="1">
<nlm:affiliation>MIGAL-Galilee Technology Center, Kiryat Shmona 10200, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>MIGAL-Galilee Technology Center, Kiryat Shmona 10200</wicri:regionArea>
<wicri:noRegion>Kiryat Shmona 10200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Flikshtein, Nufar" sort="Flikshtein, Nufar" uniqKey="Flikshtein N" first="Nufar" last="Flikshtein">Nufar Flikshtein</name>
</author>
<author>
<name sortKey="Lechenko, Sergey" sort="Lechenko, Sergey" uniqKey="Lechenko S" first="Sergey" last="Lechenko">Sergey Lechenko</name>
</author>
<author>
<name sortKey="Gepstein, Shimon" sort="Gepstein, Shimon" uniqKey="Gepstein S" first="Shimon" last="Gepstein">Shimon Gepstein</name>
</author>
<author>
<name sortKey="Dosoretz, Carlos G" sort="Dosoretz, Carlos G" uniqKey="Dosoretz C" first="Carlos G" last="Dosoretz">Carlos G. Dosoretz</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Culture Media (MeSH)</term>
<term>Cyclic AMP (metabolism)</term>
<term>Enzyme Induction (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Oxygen (pharmacology)</term>
<term>Peroxidases (biosynthesis)</term>
<term>Peroxidases (genetics)</term>
<term>Phanerochaete (drug effects)</term>
<term>Phanerochaete (enzymology)</term>
<term>Phanerochaete (growth & development)</term>
<term>Phanerochaete (physiology)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>AMP cyclique (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Induction enzymatique (MeSH)</term>
<term>Milieux de culture (MeSH)</term>
<term>Oxygène (pharmacologie)</term>
<term>Peroxidases (biosynthèse)</term>
<term>Peroxidases (génétique)</term>
<term>Phanerochaete (croissance et développement)</term>
<term>Phanerochaete (effets des médicaments et des substances chimiques)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Phanerochaete (physiologie)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclic AMP</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Culture Media</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>AMP cyclique</term>
<term>Espèces réactives de l'oxygène</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Oxygène</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Enzyme Induction</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Oxidative Stress</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Induction enzymatique</term>
<term>Milieux de culture</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Stress oxydatif</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We studied oxidative stress in lignin peroxidase (LIP)-producing cultures (cultures flushed with pure O(2)) of Phanerochaete chrysosporium by comparing levels of reactive oxygen species (ROS), cumulative oxidative damage, and antioxidant enzymes with those found in non-LIP-producing cultures (cultures grown with free exchange of atmospheric air [control cultures]). A significant increase in the intracellular peroxide concentration and the degree of oxidative damage to macromolecules, e.g., DNA, lipids, and proteins, was observed when the fungus was exposed to pure O(2) gas. The specific activities of manganese superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase and the consumption of glutathione were all higher in cultures exposed to pure O(2) (oxygenated cultures) than in cultures grown with atmospheric air. Significantly higher gene expression of the LIP-H2 isozyme occurred in the oxygenated cultures. A hydroxyl radical scavenger, dimethyl sulfoxide (50 mM), added to the culture every 12 h, completely abolished LIP expression at the mRNA and protein levels. This effect was confirmed by in situ generation of hydroxyl radicals via the Fenton reaction, which significantly enhanced LIP expression. The level of intracellular cyclic AMP (cAMP) was correlated with the starvation conditions regardless of the oxygenation regimen applied, and similar cAMP levels were obtained at high O(2) concentrations and in cultures grown with atmospheric air. These results suggest that even though cAMP is a prerequisite for LIP expression, high levels of ROS, preferentially hydroxyl radicals, are required to trigger LIP synthesis. Thus, the induction of LIP expression by O(2) is at least partially mediated by the intracellular ROS.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14602606</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>02</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>69</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2003</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>6500-6</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We studied oxidative stress in lignin peroxidase (LIP)-producing cultures (cultures flushed with pure O(2)) of Phanerochaete chrysosporium by comparing levels of reactive oxygen species (ROS), cumulative oxidative damage, and antioxidant enzymes with those found in non-LIP-producing cultures (cultures grown with free exchange of atmospheric air [control cultures]). A significant increase in the intracellular peroxide concentration and the degree of oxidative damage to macromolecules, e.g., DNA, lipids, and proteins, was observed when the fungus was exposed to pure O(2) gas. The specific activities of manganese superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase and the consumption of glutathione were all higher in cultures exposed to pure O(2) (oxygenated cultures) than in cultures grown with atmospheric air. Significantly higher gene expression of the LIP-H2 isozyme occurred in the oxygenated cultures. A hydroxyl radical scavenger, dimethyl sulfoxide (50 mM), added to the culture every 12 h, completely abolished LIP expression at the mRNA and protein levels. This effect was confirmed by in situ generation of hydroxyl radicals via the Fenton reaction, which significantly enhanced LIP expression. The level of intracellular cyclic AMP (cAMP) was correlated with the starvation conditions regardless of the oxygenation regimen applied, and similar cAMP levels were obtained at high O(2) concentrations and in cultures grown with atmospheric air. These results suggest that even though cAMP is a prerequisite for LIP expression, high levels of ROS, preferentially hydroxyl radicals, are required to trigger LIP synthesis. Thus, the induction of LIP expression by O(2) is at least partially mediated by the intracellular ROS.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Belinky</LastName>
<ForeName>Paula A</ForeName>
<Initials>PA</Initials>
<AffiliationInfo>
<Affiliation>MIGAL-Galilee Technology Center, Kiryat Shmona 10200, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Flikshtein</LastName>
<ForeName>Nufar</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lechenko</LastName>
<ForeName>Sergey</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gepstein</LastName>
<ForeName>Shimon</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dosoretz</LastName>
<ForeName>Carlos G</ForeName>
<Initials>CG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E0399OZS9N</RegistryNumber>
<NameOfSubstance UI="D000242">Cyclic AMP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000242" MajorTopicYN="N">Cyclic AMP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004790" MajorTopicYN="N">Enzyme Induction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14602606</ArticleId>
<ArticleId IdType="pmc">PMC262269</ArticleId>
<ArticleId IdType="doi">10.1128/aem.69.11.6500-6506.2003</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Free Radic Res. 1999 Feb;30(2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10193580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Oct;65(10):4458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2000 Feb 1;183(1):153-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10650219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2000 Mar 10;78(2):185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2000 Mar;146 ( Pt 3):759-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10746780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2000 Jul 01;5:D629-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10877994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2000 Oct;22(2):164-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11020331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2001 Jan;42(1):8-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11116389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2000 Dec 15;29(12):1260-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5586-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1319067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 May;61(5):1833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Aug;90(4):1267-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1979 Apr;39(4):1141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">217531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Rep. 1995 Feb;1(2):89-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27405549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Mar 10;260(5):2609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2982828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 1986 Jul;32(1):7-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3017547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1987 Jun;255(2):329-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3036004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1981 Mar 31;99(2):373-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7236274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 1995 Jul;77(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7540516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Jan;61(1):341-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7887613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1994 Mar;13(2-3):137-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8167033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1993 Sep;57(3):605-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8246842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res Commun. 1993;19 Suppl 1:S95-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8282236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 1994 Feb;55(2):253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8301222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1993 May;302(2):348-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 1993 Jul 30;54(6):983-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8392985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1995 Dec;141 ( Pt 12):3127-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8574406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1996 Apr 15;138(1):83-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8674975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Mar 14;275(5306):1649-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9054359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1997;23(3):361-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9214571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1997;23(5):809-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9296459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 1997 Nov 1;69(21):4295-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9360488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Chem Neuropathol. 1997 Sep-Dec;32(1-3):101-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9437661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Rev. 1998 May;30(2):225-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9606602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1976 Oct 11;445(3):558-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">974099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Feb;65(2):483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9925572</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Dosoretz, Carlos G" sort="Dosoretz, Carlos G" uniqKey="Dosoretz C" first="Carlos G" last="Dosoretz">Carlos G. Dosoretz</name>
<name sortKey="Flikshtein, Nufar" sort="Flikshtein, Nufar" uniqKey="Flikshtein N" first="Nufar" last="Flikshtein">Nufar Flikshtein</name>
<name sortKey="Gepstein, Shimon" sort="Gepstein, Shimon" uniqKey="Gepstein S" first="Shimon" last="Gepstein">Shimon Gepstein</name>
<name sortKey="Lechenko, Sergey" sort="Lechenko, Sergey" uniqKey="Lechenko S" first="Sergey" last="Lechenko">Sergey Lechenko</name>
</noCountry>
<country name="Israël">
<noRegion>
<name sortKey="Belinky, Paula A" sort="Belinky, Paula A" uniqKey="Belinky P" first="Paula A" last="Belinky">Paula A. Belinky</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000928 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000928 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:14602606
   |texte=   Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:14602606" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020